Edge Delta Parse CSV Processor

The Edge Delta Parse CSV processor parses CSV data fields into structured data, allowing conditional transformations based on attribute mapping.

The Parse CSV processor parses a CSV row field and a header field into an array of fields. The processor performs a conditional transformation based on whether the attributes field is a map or not. If attributes is already a map, the processor will merge the parsed body into it. If it’s not a map, the processor will replace it completely with the parsed body.

Note: The CSV data must be valid. For example, if the header and data rows have different numbers of fields, the processor will not parse the data.

Configuration

Consider this log:

{
  "_type": "log",
  "timestamp": 1745295299953,
  "body": "{\"csv\": \"XYZ789,user2,logout,failure\", \"csv_headers\": \"Session_ID,User_ID,Event_Type,Event_Details\"}",
  "resource": {
...
  },
  "attributes": {
    "csv": "XYZ789,user2,logout,failure",
    "csv_headers": "Session_ID,User_ID,Event_Type,Event_Details"
  }
}

The following configuration parses the attribute fields for the header and csv rows into a structured object:

This is the YAML version:

- name: Multi Processor_fa8d
  type: sequence
  processors:
  - type: ottl_transform
    metadata: '{"id":"a056ZYQrDcwFT1iLvwZWk","type":"parse-csv","name":"Parse CSV"}'
    statements: |-
      merge_maps(attributes["parsed"], ParseCSV(attributes["csv"], attributes["csv_headers"], ",", ",", "lazyQuotes"), "upsert") where IsMap(attributes["parsed"])
      set(attributes["parsed"], ParseCSV(attributes["csv"], attributes["csv_headers"], ",", ",", "lazyQuotes")) where not IsMap(attributes["parsed"])      

The resulting log now contains the parsed attribute:

{
  "_type": "log",
  "timestamp": 1745295299953,
  "body": "{\"csv\": \"XYZ789,user2,logout,failure\", \"csv_headers\": \"Session_ID,User_ID,Event_Type,Event_Details\"}",
  "resource": {
...
  },
  "attributes": {
    "csv": "XYZ789,user2,logout,failure",
    "csv_headers": "Session_ID,User_ID,Event_Type,Event_Details",
    "parsed": {
      "Event_Details": "failure",
      "Event_Type": "logout",
      "Session_ID": "XYZ789",
      "User_ID": "user2"
    }
  }
}

Options

Select a telemetry type

You can specify, log, metric, trace or all. It is specified using the interface, which generates a YAML list item for you under the data_types parameter. This defines the data item types against which the processor must operate. If data_types is not specified, the default value is all. It is optional.

It is defined in YAML as follows:

- name: multiprocessor
  type: sequence
  processors:
  - type: <processor type>
    data_types:
    - log

condition

The condition parameter contains a conditional phrase of an OTTL statement. It restricts operation of the processor to only data items where the condition is met. Those data items that do not match the condition are passed without processing. You configure it in the interface and an OTTL condition is generated. It is optional.

Important: All conditions must be written on a single line in YAML. Multi-line conditions are not supported.

Comparison Operators

OperatorNameDescriptionExample
==Equal toReturns true if both values are exactly the sameattributes["status"] == "OK"
!=Not equal toReturns true if the values are not the sameattributes["level"] != "debug"
>Greater thanReturns true if the left value is greater than the rightattributes["duration_ms"] > 1000
>=Greater than or equalReturns true if the left value is greater than or equal to the rightattributes["score"] >= 90
<Less thanReturns true if the left value is less than the rightattributes["load"] < 0.75
<=Less than or equalReturns true if the left value is less than or equal to the rightattributes["retries"] <= 3
matchesRegex matchReturns true if the string matches a regular expression (generates IsMatch function)IsMatch(attributes["name"], ".*\\.log$")

Logical Operators

Important: Use lowercase and, or, not - uppercase operators will cause errors!

OperatorDescriptionExample
andBoth conditions must be trueattributes["level"] == "ERROR" and attributes["status"] >= 500
orAt least one condition must be trueattributes["log_type"] == "TRAFFIC" or attributes["log_type"] == "THREAT"
notNegates the conditionnot regex_match(attributes["path"], "^/health")

Functions

FunctionDescriptionExample
regex_matchReturns true if string matches the patternregex_match(attributes["message"], "ERROR\|FATAL")
IsMatchAlternative regex function (UI generates this from “matches” operator)IsMatch(attributes["name"], ".*\\.log$")

Field Existence Checks

CheckDescriptionExample
!= nilField exists (not null)attributes["user_id"] != nil
== nilField doesn’t existattributes["optional_field"] == nil
!= ""Field is not empty stringattributes["message"] != ""

Common Examples

- name: _multiprocessor
  type: sequence
  processors:
  - type: <processor type>
    # Simple equality check
    condition: attributes["request"]["path"] == "/json/view"
    
  - type: <processor type>
    # Multiple values with OR
    condition: attributes["log_type"] == "TRAFFIC" or attributes["log_type"] == "THREAT"
    
  - type: <processor type>
    # Excluding multiple values (NOT equal to multiple values)
    condition: attributes["log_type"] != "TRAFFIC" and attributes["log_type"] != "THREAT"
    
  - type: <processor type>
    # Complex condition with AND/OR/NOT
    condition: (attributes["level"] == "ERROR" or attributes["level"] == "FATAL") and attributes["env"] != "test"
    
  - type: <processor type>
    # Field existence and value check
    condition: attributes["user_id"] != nil and attributes["user_id"] != ""
    
  - type: <processor type>
    # Regex matching using regex_match
    condition: regex_match(attributes["path"], "^/api/") and not regex_match(attributes["path"], "^/api/health")
    
  - type: <processor type>
    # Regex matching using IsMatch
    condition: IsMatch(attributes["message"], "ERROR|WARNING") and attributes["env"] == "production"

Common Mistakes to Avoid

# WRONG - Cannot use OR/AND with values directly
condition: attributes["log_type"] != "TRAFFIC" OR "THREAT"

# CORRECT - Must repeat the full comparison
condition: attributes["log_type"] != "TRAFFIC" and attributes["log_type"] != "THREAT"

# WRONG - Uppercase operators
condition: attributes["status"] == "error" AND attributes["level"] == "critical"

# CORRECT - Lowercase operators
condition: attributes["status"] == "error" and attributes["level"] == "critical"

# WRONG - Multi-line conditions
condition: |
  attributes["level"] == "ERROR" and 
  attributes["status"] >= 500  

# CORRECT - Single line (even if long)
condition: attributes["level"] == "ERROR" and attributes["status"] >= 500

Parse from

Specify the field containing the CSV data.

Assign to

Specify the field where you want the parsed object to be saved.

Header source

Choose between defining the headers in the configuration (Static string) or specifying a field in the data item that contains the headers (Path).

Specify the field containing the headers if Path is selected as the Header source. Otherwise specify the Headers separated by a comma.

Delimiter

You can specify which character is used in the source data item to separate the CSV values. It uses a comma by default.

Header Delimiter

You can specify which character is used in the source data item to separate the Header values. It uses a comma by default.

Mode

The mode option sets how strictly to interpret the CSV fields. You can choose from one of the following:

OptionDescription
StrictEnforces proper CSV format with matching quotes.
Lazy quotesAllows malformed or mismatched quotes, parses leniently.
Ignore quotesTreats quotes as normal characters, no special parsing.

Final

Determines whether successfully processed data items should continue through the remaining processors in the same processor stack. If final is set to true, data items output by this processor are not passed to subsequent processors within the node—they are instead emitted to downstream nodes in the pipeline (e.g., a destination). Failed items are always passed to the next processor, regardless of this setting.

The UI provides a slider to configure this setting. The default is false. It is defined in YAML as follows:

- name: multiprocessor
  type: sequence
  processors:
    - type: <processor type>
    final: true

Keep original telemetry item

Controls whether the original, unmodified telemetry item is preserved after processing. If keep_item is set to true, the processor emits both:

  • The original telemetry item (e.g., a log), and
  • Any new item generated by the processor (e.g., a metric extracted from the log)

Both items are passed to the next processor in the stack unless final is also set.

Interaction with final

If final: true is enabled, any successfully processed data items, whether original, newly created, or both, exit the processor stack or node immediately. No subsequent processors within the same node are evaluated, although downstream processing elsewhere in the pipeline continues. This means:

  • If keep_item: true and final: true, both the original and processed items bypass the remaining processors in the current node and are forwarded to downstream nodes (such as destinations).
  • If keep_item: false and final: true, only the processed item continues beyond this processor, skipping subsequent processors in the stack, and the original item is discarded.

Note: If the data item fails to be processed, final has no effect, the item continues through the remaining processors in the node regardless of the keep_item setting.

The app provides a slider to configure keep_item. The default is false.

- name: ed_gateway_output_a3fa_multiprocessor
  type: sequence
  processors:
    - type: <processor_type>
      keep_item: true
      final: true

See Also